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system includes a pair of eyes and auricular grooves, which are 

also located in the head region (Kyle Alan Gurley, et al, 2008). 

Abstract— Phsophatidylinositol-5-phosphate-4-kinase 

(PIP4K) are stress regulated lipid kinase that utilise PIP5P as a 

substrate to generate PI(4,5)P2 product. Previous studies 

concluded the expression of PIP4K in different model 

organisms and the impact of dysregulated PIP4K activity 

causesdelayed growth, improper vesicle transport, less weight 

gain andmislocalisation of protein. In this review, we will 

analyse the possibilities of PIP4K activity in planaria and 

hypothesize on the chances of PIP4K related studies for future 

direction. 
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1. PLANARIANS 

Planarians (Schmidtea mediterranea) could regenerate their 

complete bodies from a single excised segment (Samantha 

Herath, et al, 2020). This capability to regenerate enables them 

to proliferate asexually by fission, a mechanism that causes the 

body to split in a plane perpendicular to the anterior posterior 

axis (J. B. Best, et al, 1969). The torn-apart bits regenerate and 

re-pattern themselves to produce a whole animal. The size of 

the animal as well as environmental conditions influence the 

induction of this process (J. Baguna, et al, 1989). Although its 

biomechanics of this mechanism are well established, the 

molecular signalling pathways that trigger and regulate it 

demand more investigation. 

 PLANARIAN BIOLOGY 

Planarians belongs to the Platyhelminthes phylum and order 

Tricladida (triclads) whichare free living flatworms (C. M. 

Child, 1911). They are found in freshwater, marine and 

terrestrial habitats. Flatworms of the Triclad family are 

bilateral, triploblastic, and acoelomate (Isao Hori, et al, 1998). 

The region between organ systems is loaded with connective 

tissue named mesenchyme or parenchyma. Planarians do not 

have a circulatory system, thus oxygen and nutrients are 

transferred by absorption along the body wall and diffusion via 

digestive system (Y Asano, et al, 1998). A muscular pharynx 

located ventrally permits food and waste to be exchanged with 

the environment. The nervous system comprised of ventral 

nerve cords that expand at the anterior region to form the 

brain, also known as the cerebral ganglia. The primary sensory 

The animal's reproductive states varies according on the strain, 

ranging from asexual to sexual to alternating between the two 

ways. Planarians are hermaphrodites which cross-fertilize 

during copulation (Miquel Vila-Farré, et al, 2018). The asexual 

strains of the animals also exhibit a cryptic dynamic form of 

segmentation, known as fission planes, which correlates with 

the size of the animal and number of subsequent fission 

progeny (Arnold, et al, 2019). 

 PLANARIA AS A MODEL ORGANISM 

Planarian are triploblastic organisms constitute of ectoderm, 

mesoderm and endoderm. They exhibit bilateral symmetry, 

encephalization, and the capability to sense stimuli. However 

they are recognised mostly for the incredible regenerative 

property. The capacity to regenerate a whole organism from a 

fragment is due to the abundancy of pluripotent adult stem 

cells (neoblasts) present within them (Peter W. Reddien et al, 

2004). Planarians are potential model organisms for 

understanding complicated biological processes often found in 

metazoans due to their receptiveness to molecular genetic 

approaches (Peter W. Reddien, et al, 2004) (N. J. Oviedo, et al, 

2008). 

REGENERATIVE CAPABILITIES OF 

PLANARIANS 

Planarians are recognised for their remarkable capacity to 

regenerate entire organ systems. Planaria regenerate complete 

precisely proportioned individuals from each piece if it is 

sliced into multiple disproportionate fragments (Francesc 

Cebrià, et al, 2018). Due to their intrinsic mechanism of 

continually renewing all organismal cell types from pluripotent 

stem cells, these animals have the ability to minimize their size 

when starved (Jaume Baguñà and Romero, 1981). Neoblasts 

are planarians' sole pluripotent stem cells, and they're in charge 

of regeneration, asexual reproduction, growth, and homeostasis 

(Phillip A. Newmark, et al, 2002) (Felix Brinkmann, et al, 

2018). These stem cells are found throughout the mesenchyme, 

not just within tissues. Before terminal differentiation, 

neoblasts must differentiate to mesenchyme to particular target 

tissues (Alejandro Sánchez Alvarado, et al, 2002). 

 

ROLE OF PHOSPHATIDYLINOSITOL 

SIGNALLING 

The phosphatidylinositol (PI) consist of glycerophospholipid 

accompanied by myoinositol head group (six hydroxyl groups 
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in a cyclic alcohol). Through a phosphodiester bond, at the 

position 1 of myo-inositol, the hydroxyl group is esterified to 

the sn-3 hydroxyl group of phosphatidic acid (PA) in PI. The 

synthesis of phosphorylated metabolic products allows 

phosphatidylinositol to act as signalling molecules (Di Paolo 

and De Camilli, 2006). Seven phosphatidylinositol are being 

produced; one trisphosphate PI(3,4,5)P3, three bisphosphates 

[PI(3,5)P2, PI(4,5)P2 and PI(3,4)P2] and three 

monophosphates [PI5P, PI3P and PI4P]. Past research on the 

phosphatidylinositol signalling in different model organisms to 

comprehend the molecular basis of defective phenotype. These 

in vivo findings were crucial in establishing the relevance of 

phosphatidylinositol metabolism, implemented the important 

role of phosphatidylinositol-4,5-bis phosphate [PI(4,5)P2] 

hydrolysis in regulating a physiological process in a living 

beings (Balakrishnan et al., 2015). The phosphodiester link 

between the PI(4,5)P2 of glycerol backbone and the inositol 

head group is hydrolyzed by PLC enzymes, resulting inDAG 

and inositol-1,4,5-triphosphate (IP3) production (Balakrishnan 

et al., 2015). 

 

 

Figure 1-Signalling pathway of generation of 

phosphatidylinositol metabolic products. 

 
 

PIP4K is encoded by a single gene in invertebrate models such 

as Drosophila and Caenorhabditis elegans, but three genes in 

mammalian genomes codes for phosphatidylinositol 5 

phosphate-4 kinase protein isoforms. Each gene plays role in 

biological function: PIP4K2C, PIP4K2A and PIP4K2B. PIP4K 

enzymes and its substrate phosphatidylinositol 5 phosphate 

(PI5P) were considered to affect a variety of subcellular 

functions, including nuclear function (Fiume et al., 2015), 

membrane transport (Ramel et al., 2011; Boal et al., 2015; 

Kamalesh et al., 2017), mammalian Target of Rapamycin 

(mTOR) signalling (Gupta et al., 2013) and autophagy 

(Vicinanza et al., 2015). Drosophila PIP4K (dPIP4K) caused 

into null allele with dPIP4K29 resulted into elevated level of 

PI5P substrate (Gupta et al., 2013). In the dPIP4K29, salivary 

glands cells showed delayed growth and development with a 

decrease mTOR activity (Gupta et al., 2013). Also, drosophila 

with knockout PIP4K, resulted into mislocalisation of Rh1 

protein in the cytoplasm, associated with unregulated clathrin 

mediated endocytosis mechanism resulted into visual 

complication (Kamalesh et al., 2017). 

In peripheral blood cells, the expression level of PIP4K2A 

(PIP4K isoform in humans) is high; PIP4K2B highly abundant 

in muscle tissue and PIP4K2C identified in kidney (Divecha et 

al., 1995; Castellino et al., 1997; Clarke et al., 2008). 

Similarly, the localisation of PIP4K enzyme in different model 

organism’s tissue differs. These prevail the idea of PIP4K 

activity in different tissues of the same organism will differ 

due to fluctuations in PIP4K expression. And the downstream 

signalling outcome might also be altered. 

Previous studies also investigated that PIP4K might regulate 

the functionally PI(4,5)P2 and play role in PIP4K mediated 

PI(4,5)P2 synthesis (Hinchliffe et al., 1996; Rozenvayn and 

Flaumenhaft et al., 2001). Also, the role of PIP4K in other 

pathway acting as a cross-talk signalling mediator has not been 

well established. Even few more questions are unanswered. 

Why do cells adopt two separate mechanisms to 

synthesisPI(4,5)P2?Does PI5P conduct any significant cell 

signalling functions? Role of PIP4K in planarian regeneration 

model? 

 
Exploration of PIP4K activity in planarian model organisms is 

not well established. Although it would be interesting to find 

out the key concept behind the PIP4K activity in planaria. As 

planaria is considered as one of the standard model for 

regeneration and previous experiment explored the single cell 

RNA sequencing of planaria and proven the expression of 

PIP4K gene in planaria. 

 
2. CONCLUSION- 

Past experiments have concluded the role of PIP4K in the 

growth of an organism, crucial for vision, transport of vesicles, 

weight gain, pupariation, etc. But the role of PIP4K in 

planarian model regarding regeneration, sensory defects or 

growth is unexplored. There might be possibilities that those 

unknown concept related to PIP4K which has been addressed 

in previous studies could be answered through planarian 

model. In spite of the regeneration property in planaria, disease 

like cancer to be observe in planaria is very unlikely. Such a 

well control and resistance against cancer could be related to 

PIP4K activity (PIP4K activity controls the growth as proven 

in past studies). Many possibilities related to PIP4K activity in 

planaria are unresolved and further future studies have been 

opened for it. 
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