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Abstract—The amount of load required fluctuates from hour to 
hour in a typical microgrid (MG) arrangement. The power 
system utilities set the price of electricity at various periods of the 
day based on the load-demand curve's peaks and valleys. 
Electricity pricing based on time-of-use (TOU) is the term used to 
describe this procedure. It is possible to divide the hourly basis 
load demand into elastic and inelastic categories. Demand side 
management (DSM) shifts elastic loads to low demand hours 
during peak hours, when the utility charges more, in order to 
save costs. The demand price elasticity is then used to create the 
whole demand model. In order to reduce total costs associated 
with employing loads in MG structures, the study offers an 
intelligence-technique based DSM, keeping in mind that 10% to 
40% of the total load within an MG structure within an hour is 
made up of elastic loads. Seven different scenarios, including 
DSM initiatives, are analyzed, and they include a range of grid 
participation and power market pricing tactics. The outcomes for 
each MG demonstrate the relevance and suitability of the 

suggested DSM strategy in terms of cost savings. 
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I. INTRODUCTION 

 
Using the development of clean energy technology, they are 

receiving progressively utilized inefficient load dispatch 

(ELD)(ELD). A distributed system's various generating units 

do not share and deliver the same amount of load, which is 

reflected in the ELD concept. Rather, it distributed many loads 

is based on the respective Cost is an issue in order to equal the 

system's minimum generating cost. In addition, for any grid to 

function properly, the total energy demand must match the 

total energy output [1]. The notion ELD can be used roughly 

into dynamic ELD and static ELD (StELD) based on load 

demand (DyELD). Although DyELD when discussing ELD 

scenarios, the load demand fluctuates for a specified period, 

StELD when discussing ELD scenarios, the load demand 

remains constant. Due to the significantly less stringent 

amount of limitations, like ramp rates, banned operation areas, 

etc., StELD is relatively straightforward DyELD, however, is a 

more challenging  

 

optimization issue. Here is so that DyELD can manage 

temporal and distributed energy resource (DER) limitations in 

addition to StELD constraints [4]. The duration of DERs, from 

start to finish as well as the process of power storage devices 

being charged and discharged pose the biggest problem in 

determining the best solution to DyELD difficulties. 

 

A. Related Work 

Many research projects have conducted to assure the wise 

renewable energy creation and distribution energy, which can 

guarantee a good revolutionary influence in the framework of 

the economy of power production.  Also, it is crucial because 

of rising fuel costs and environmental concerns. A thorough 

research of ELD can therefore be seen as a critical issue in the 

power industry. The standard computational techniques can be 

used with ease when dealing with cost functions that are 

smooth, continuous, and non-convex [5]. However, because to 

the addition of established physical restrictions, an ELD issue 

is portrayed with an uneven and convex surface. form, 

complicating things and thus the failure of typical approaches 

[6]. Traditional optimization techniques like recursive lambda, 

the dynamic programming, the gradient approach, and 

frequently used to address smooth ELD problems [7]. Yet, the 

accurate modelling of ELD difficulties in real-world settings 

necessitates a high level of precision and the meticulous 

management of multiple restrictions. This makes the objective 

function possible with extra complexity that undermines 

established patterns methodologies for obtaining the ideal 

answer [8]. The cost curve's shape is one of the main obstacles 

to the application of these approaches. Contrary to the system 

dimensionality, which heavily influences dynamic 

programming, the cost curve has no impact on it. Moreover, 

for big systems, dynamic programming has a long computation 

time [9, 10]. The relevance Using meta-heuristic techniques in 

the field of addressing the nonlinearity issue in ELD in recent 

years has gained relevance while keeping in mind all the 

shortcomings of the conventional methodologies [11]. Many 

Anshu Singh,GIET University, Gunupur, Odisha 

Amitesh Kumar, GIET University, Gunupur, Odisha 

Anshu Priya Yadav,GIET University, Gunupur, Odisha 

Rakesh Sahu , GIET University, Gunupur, Odisha 

Bishwajit Dey, GIET University, Gunupur, Odisha 

 

Genetic Algorithm based demand side 

management for dynamic economic dispatch of 

microgrid system 

 



2 F.SURNAME, S.SURNAME, T.SURNAME 

 

evolutionary techniques emerged throughout time in the field 

of ELD problem research. These evolutionary techniques were 

developed with inspiration from the development of life [12]. 

As an illustration, the (GA) [13] is a genetic algorithm. a well-

known employing evolution used is built on the idea of cell 

reproduction and its well-known genetics to address the ELD 

problem.  

DERs combine generators that use fossil fuels with RES such 

micro-turbines, solar generators, fuel cells, batteries, and 

flywheels, among others [14]. Microg the demand points for 

load rids (MGs) are a type of DER that distribute the load 

demand points over a small geographic area. MGs can operate 

in grid-connected or mode islanded. Considering that there are 

purchase and sell options available to or from the utility, the 

grid-connected form is favored. In the event of an 

unanticipated network failurethe utility-connected DER has the 

choice of getting grid power support. Researchers' interest in 

the field of MG energy management has greatly increased as a 

result of this. To lower A matrix real-coded based GA, an 

imperialist competitive algorithm (ICA), and an on-grid mode 

MG's manufacturing costs are shown in [15,16]. The authors 

undertook a number of case studies to demonstrate how well 

the algorithm handled the small operating window intermittent 

DERs  price of electricity, and load volatility. In [17], the 

cuckoo search algorithm has been used, which performs better 

than differential evolution (DE) and particle swarm 

optimization (PSO) methods. A DyELD issue is being 

identified based on the wind speed in an islanded MG with two 

wind turbines. It has been reported in [18] that an adaptive 

modified PSO can be used to obtain an ELD solution in an on-

grid mode MG. The authors of [19] use a tailored ICA method 

to examine economic goals and goals related to emission 

dispatch.  

In [20–22], a three-unit island MG with PV and wind 

generating uses the for economical dispatch, emission 

shipment, and combined economic emission dispatch, the 

modified harmonic search method, the interior search method, 

and the whale optimization method, respectively (CEED). The 

best value is chosen for CEED after numerous price penalty 

elements have been analyzed. Modified personal best PSO, 

artificial fish swarm algorithm and memory-based GA are 

utilized in [23–25] for an islanded MG system incorporating 2 

PVs, 3 wind turbines (WTs) and 1 combined heat and power 

(CHP) (CHP). The MPBPSO demonstrated the best outcome 

in terms of minimization of the cost. 

 

B.THE RESEARCH PAPER'S ORDER 

The remainder of the text is presented in the following 

sequence. In Section 2, the role of fitness that must be 

minimized is considered. This part also examines the DSM-

based MG energy management's limitations on equity and 

inequality for the test systems. Three low-voltage connected to 

the grid residential and commercial MG are presented in Part 

3. buildings that are used as case studies. The planned work is 

inferred in Section 4. The paper's final part makes suggestions 

for additional work.  

 

II. Demands Side Management 

 

A. Strategy Incorporated in DSM 

Over the past few years, research on MG energy management 

with an emphasis on economic activities has progressively 

increased. The description of the economic activity for an MG 

structure is tasteless without the idea of DSM. When the DSM 

is used, most of the research articles discussed in the related 

work section can be produced for less money. strategy. With 

the DSM technique, elastic loads are identified and transferred 

as efficiently as possible to the area of the load curve where 

the electricity usefulness charge is lower. Peak demand is 

reduced as a result. As a result, the utility's load factor 

increases, even while the overall load demand at the end of a 

scheduling term—which, for most utilities, is a day—remains 

same. In Figure 1, some of the load shaping techniques used by 

DSM are shown, including load shifting, valley filling, peak 

clipping, flexible load shaping, strategic conversion, and 

strategic expansion. Basic-level types comprise the first three 

techniques. The system design and operation of the three 

additional, more complex ways is used to alter the overall load 

demand shape. The load shifting strategy, which combines 

many loading management techniques, is in fact the most 

popular. consumption. 

 

 
Figure 1. Load shaping methods of DSM. 

 

B. How to Use the DSM Method to Get a Restructured Load 

Model 

Phase 1: The various There are T hours of loading data 

entered. 

Phase 2: For the next T hours, the power market rate based on 

time of utilization (TOU) is entered. 

Phase 3: The DSM engagement percentage is input (in case the 

elastic loads are not determined in before). 

Phase 4: Considering the DSM percentage involvement, the 

quantity of elastic loads, 
tm

elLD , is determined. For instance, 

P% DSM participation suggests that P% of the hourly load 

demand is elastic load. Remaining (100−P) percent is in elastic 

load, 
tm

elLD . Following the calculation, the elastic loads are 

scheduled optimally. 
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Phase 5: The minimal, maximal & average of both the in 

elastic weights are calculated. 

Phase 6: The optimization approach is then used, as shown in 

(13), subject to the restrictions in (14), and (15), where C tm 

grid denotes the TOU-based electricity price at time tm, LDtm 

in denotes the inelastic load at time tm, and 
maxLD denotes 

the maximum load density. The maximum allowable elastic 

load is known as el. 

Phase 7: The DSM technique recognizes the reconstructed 

load demand idea as the sum of the hourly inelastic load 

demand with the elastic maximum load that is optimized. 

[ *( )]tm tm tm

grid in elMin C LD LD (1) 

max0 tm

el elLD LD  (2) 

 

Total Demand=
1
( )

T tm tm

in eltm
LD LD


 (3) 

 

III.Proposed Algorithm:  Genetic Algorithm 

 

Genetic algorithms (GA) are a subset of evolutionary 

algorithms that are based on the principles of natural selection 

and genetics. GAs is used to solve optimization problems by 

mimicking the process of natural selection and the biological 

mechanisms of genetic recombination and mutation. The goal 

of a genetic algorithm is to find the optimal solution to a 

problem by generating a population of candidate solutions and 

repeatedly selecting the fittest individuals, reproducing them, 

and introducing genetic variation through mutation and 

crossover operations. 

The basic components of a genetic algorithm include the 

population, fitness function, selection, crossover, and mutation. 

The population represents a set of candidate solutions to the 

problem being optimized. The fitness function evaluates how 

well everyone in the population performs with respect to the 

problem at hand. The selection process determines which 

individuals will be used for reproduction based on their fitness 

scores. The crossover operation involves selecting two 

individuals from the population and recombining their genetic 

information to create offspring. The mutation operation 

introduces random variations in the genetic information of an 

individual. 

The effectiveness of a genetic algorithm depends on the 

quality of the fitness function, the selection method, and the 

mutation and crossover operations. The fitness function must 

accurately measure the performance of everyone in the 

population. The selection method should favor fitter 

individuals while still allowing for diversity in the population. 

The mutation and crossover operations should introduce 

sufficient variation to explore the search space effectively 

while avoiding premature convergence to suboptimal 

solutions. Genetic algorithms have been used to solve a wide 

range of optimization problems, including scheduling, routing, 

and packing problems, as well as in engineering, finance, and 

other fields. They have several advantages over traditional 

optimization methods, such as the ability to handle non-linear 

and non-convex functions, and the ability to search for 

multiple solutions simultaneously. 

In summary, genetic algorithms are a powerful optimization 

technique that mimics the natural process of evolution to 

search for optimal solutions. They are particularly useful in 

problems where traditional optimization methods may 

struggle, and they have been successfully applied to a wide 

range of real-world problems. A flowchart for steps of GA 

implementation is shown in Figure 2. 

 
Figure 2: Steps for implementing Genetic Algorithm (GA) 

 

IV.Results and Discussion 

 

A 24 hours’ load demand as shown in Figure 3 is considered 

for restructuring implementing various levels of DSM 

participation. the market price for electricity dependent on 

when it is used is shown in Figure 4. GA was implemented as 

optimization tool to restructure the forecasted load demand 

considering 10% to 40% DSM participation levels. The 

optimization was done using GA toolbox in MATLAB 2017 

Intel Core i5 processor with 8GB of RAM installed in a 

laptop’s participation levels indicate the amount of elastic 

loads every hour that can be rescheduled to those hours when 

the electricity market price is less. This has been described 

above in Section 2. The restructured dynamic load demand 

after the implementation of DSM from 10-40% is shown in 

Figure 5. The positive impacts of DSM implementation can be 

seen in Table 1 and are described below: 

 The total load demand and average load demand 

model remains the same for any level of DSM 

participation. 

 The peak demand reduced to as high as 4% when 

DSM level participations were implemented. 

 The (LF) load factor (ratio of average demand to peak 

demand) increased gradually for various levels of 

DSM participation. The generation cost decreased 

from $4168 to $3985 when various levels of DSM 

participation were introduced. 
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Figure 3: Dynamic Load demand with respect to time 

 

 
Figure 4: Electricity market price varying on Time of Usage 

basis 

 

 

 
Figure 6: Decrement in generation cost due to DSM   

participation levels 

 

 

 

 

 

Figure 5: Dynamic Load demand for different levels of DSM participation 

 

 

 

Table 1 

Effects of DSM strategy on load demand
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Peak 22 21.099 21.190 21.296 21.373 

Avg 15.2 15.29 15.29 15.29 15.29 

LF 0.6 0.7246 0.721 0.7179 0.7152 

Peak reduc   4.09 3.67 3.19 2.83 

Gen. cost 4168.8 4122.9 4078.606 4028.6157 3985.9738 
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CONCLUSION 

Genetic algorithm was used to perform demand side 

management on dynamic load demand with time of usage 

(TOU) based electricity pricing. The elastic loads were 

gradually changed for 10-40% and the following positive 

impacts were observed: 

a. The load factor was gradually increase from 0.695 to 

0.71524 when the elastic loads were increased up to 

40%. 

b. The peak demand was reduced to 4.09% when DSM 

was implemented to shift the elastic loads from peak 

to off-peak periods. 

c. The generation cost of the microgrid system was 

reduced from $4168 to $3986 when 40% elastic loads 

were considered. That is a 4.3% savings in the 

generation cost was realised. 
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